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Abstract

The fundamental objective of this work is to determine the extent
to which unicast, end-to-end network measurement is capable of
determining internal network losses. The major contributions of
this paper are two-fold: we formulate a measurement procedure
for network loss inference based on end-to-end packet pair mea-
surements, and we devel op a statistical modeling and computation
framework for inferring internal network loss characteristics. Sm-
ulation experiments demonstrate the potential of our new frame-
work.

1.

In large-scale networks, end-systems cannot rely on the net-
work itself to cooperate in characterizing its own behavior.
This has prompted several groups to investigate methods
for inferring internal network behavior based on end-to-end
network measurements [1, 2, 3, 4, 5, 6]; the so-called net-
work tomography problem. While promising, these meth-
ods require special support from the network in terms of
either cooperation between hosts, internal network mea-
surements, or multicast capability. Many networks do not
currently support multicast due to its scalability limitations
(routers need to maintain per group state), and lack of ac-
cess control. Moreover, multicast-based methods may not
provide an accurate characterization of the loss rates for the
traffic of interest, because routers treat multicast packets dif-
ferently than unicast packets.
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In this paper, we introduce a new methodology for net-
work tomography (specifically, inferring packet loss proba-
bilities on internal network links) based on unicast measure-
ment. In contrast to multicast techniques, unicast inference
is easily carried out on most networks and is scalable. Our
approach employs unicast, end-to-end measurement of sin-
gle packet and back-to-back packet pair losses, which can
be performed actively or passively. By back-to-back packet
pairs we mean two packets that are sent one after the other
by the source, possibly destined for different receivers, but
sharing a common set of links in their paths. Throughoutthe
remainder of the paper we work with “success” probabilities
(probability of non-loss) instead of loss probabilities. This
provides a more convenient mathematical parameterization
of the problem, and the probability of loss is simply one
minus the probability of success.

The use of back-to-back packet pair measurements is
motivated by the following reasoning. If two back-to-back
packets are sent across a link and the first packet is received,
then it is highly likely that the second packet will also be re-
ceived. We expect that the conditional success probability
of the second packet (given that the first is received) may
often be close to one. This observation has been verified ex-
perimentally in real networks [7] and can also be established
theoretically under an M/M/1/K queue model [8]. Exploit-
ing this correlation between back-to-back packet losses, we
develop a framework for the statistical estimation of inter-
nal success probabilities based solely on unicast, end-to-end
measurement. In our simulated experiments, we are able
to obtain accurate loss estimates even in cases where the
conditional success probabilities are significantly less than
one (e.g., conditional success probabilities of 0.9, which are



lower than typical measurements on the Internet).

The inherent structure of networks makes this problem
ideally suited to the new field of factor graph analysis.
Factor graphs enable us both to visualize the relationships
between statistics and network parameters and to greatly
simplify the tomography problem through both probabil-
ity factorization and message passing algorithms [9]. These
graphical models enable very efficient and scalable estima-
tion algorithms. In fact, the complexity of our algorithms
grows linearly with the number of nodes in the network un-
der study. A key strength of our methodology is that it can
deliver not only point estimates and confidence intervals,
but also probability distributions for network parameters of
interest. This provides the complete characterization of the
accuracy and reliability of inferred network behavior that
is necessary for modeling, maintenance, and service provi-
sioning.

The paper is organized as follows. In Section 2, we intro-
duce the basic unicast tomography problem and the techni-
cal issues involved. In Sections 3 and 4, we formally define
our loss modeling assumptions and measurement frame-
work. Section 5 describes several basic statistical infer-
ence tasks involved in unicast tomography. In Section 6,
we propose two novel inference algorithms, both of which
are based on the notion of “unobserved data” and likeli-
hood factorization. Section 7 investigates the consistency
and bias of our inference algorithms. In Section 8, we ex-
amine the performance of our methods through simulation,
and concluding remarks are made in Section 9.

2. Unicast Tomography

We consider a scenario in which a single source sends pack-
ets to a number of receivers (extensions to multiple sources
are possible). In this case, the network topology (from the
perspective of the source) is a tree-structure. Figure 2. de-
picts an example topology with source (node 0) and eight
receivers (nodes 6 through 13). Also shown are five internal
routers (nodes 1 through 5). We assume that we are able
to measure network traffic only at the edge; that is, we can
determine whether or not a packet sent from the source is
successfully received by one of the receivers. This type of
confirmation can be obtained via TCP’s acknowledgment
system, for example. We also assume that the routing table
is fixed for the duration of the measurement process, which
ensures the tree-structured topology.

The goal of this work is to estimate the loss probabilities
associated with each individual link (between two routers)
in the network. Here, we use the term path or subpath to
refer to a connection through two or more routers and link
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Figure 1 — Tree-structured graph representing a single-
source, multiple-receiver network.

to refer to a single, direct connection between two routers.
Restricting ourselves to edge-based measurement, we can
measure the numbers of packets sent to and received by each
receiver, providing us with a simple means of estimating the
probabilities of success along each path (from source to re-
ceiver). Unfortunately, there is no unique mapping of the
path success probabilities to the success probabilities on in-
dividual links (between routers) in the path. To overcome
this difficulty, we propose a methodology based on mea-
surements made using back-to-back packet pairs. These
measurements provide an opportunity to collect more infor-
mative statistics that can help to resolve the links.

The basic idea employed here is quite straightforward.
Suppose that we send two, closely time-spaced (back-to-
back) packets from the source, with the first packet destined
for receiver 4 and the second for receiver j. The paths tra-
versed by the packets share some common subpath and then
diverge at some point. For example, referring to Figure 2.,
suppose the first packet is destined for node 6 and the second
for node 7. Then the two packets share a common subpath
up to node 4. Now, if the first packet is received at node
6, then it is highly likely that both packets were received
at node 4 (since they were closely time-spaced). Thus, if
the second packet is not received at hode 7, then we can de-
duce that it was probably dropped on the link from node 4 to
7. Repeating this packet-pair measurement numerous times
and recording the number of drops of the second packet
(when the first packet is received), we can isolate the loss
rate on the 4-7 link.

Collecting measurements from an assortment of such
back-to-back packet pairs (sent to different combinations of
receivers) allows us to resolve the losses occurring on all
links in the network. The key to this approach is the ex-
ploitation of the correlation between packet-pair losses on



common subpaths.

In this paper, we examine several issues which in the fol-
lowing sections including: developing scalable estimation
algorithms that are applicable to large networks; the sensi-
tivity of the estimation procedure to cases in which the cor-
relation between packet-pair losses on common subpaths is
imperfect; and characterization of achievable estimation ac-
curacy from limited numbers of packet measurements.

3. LossModeling

Here we describe our measurement method and statistical
model in detail. Consider the tree-structured network asso-
ciated with a single source and multiple receivers (e.g., Fig-
ure 2.). A distinct path (from the source) is associated with
each receiver. Each path is comprised of one or more links
between routers (nodes). If isolated subpaths (subpaths con-
sisting of two or more links with no branches) exist in the
network under consideration, then these are removed and
replaced by a single composite link to represent the isolated
subpath. No isolated subpaths exist in the network shown in
Figure 2., but if, for example, additional routers were added
between nodes 1 and 2, then we would simply model this
chain of links as one composite link resulting in the same
tree.

For individual packet transmissions, we assume a sim-
ple Bernoulli loss model for each link. The unconditional
success probability of link ¢ (the link into node %) is defined
as

a; = Pr(packet successfully transmitted from p(4) to 7),

where p(i) denotes the index of the parent node of node
i (the node above i-th node in the tree; e.g., referring to
Figure 2., p(1) = 0). A packet is successfully sent from
p(i) to ¢ with probability «; and is dropped with probability
1- (o7

We model the loss processes on separate links as mutu-
ally independent. Although spatial dependence (correlated
success probabilities on neighbouring links) may be ob-
served in networks due to common traffic, such dependence
is highly circumstantial and cannot be readily incorporated
in a model that is intended to be generally applicable to a
variety of networks. Bolot et al. proposed Markovian mod-
els of packet loss in [10] based on observations of Internet
traffic. Although such models do not fully account for the
extended loss bursts observed in [7], we adopt a similar ap-
proach for modeling the packet loss processes on each link
(the model is reminiscent of that used to explore temporal
dependence in [1]).
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If two, back-to-back packets are sent from node p(i) to
node 7, then we define the conditional success probability as

B

where p(i) — 4 is shorthand notation denoting the success-
ful transmission of a packet from p(4) to ¢. That is, given
that the first packet of the pair is received, then the sec-
ond packet is received with probability 3, and dropped with
probability 1 — 8,. We anticipate that 3, > «; for each
1, since knowledge that the first packet was successfully re-
ceived suggests that the queue for link 7 is not full. Evidence
for such behavior has been provided by observations of the
Internet [11, 7]. In fact, it is not unreasonable to suppose
that 5, ~ 1 in many cases, as demonstrated in the next sec-
tion.

1l

Pr(2nd packet p(i) — 4 | 1st packet p(i) — i),

4. Queueing Analysis

We now give theoretical conditions under which 8, > «;.
Consider a modified version of the classical M/M/1/K queue
model in which the arrivals are generated from an inhomo-
geneous Poisson process (instead of a homogeneous pro-
cess). The simplest case is one where the arrivals obey
a two-component mixture of homogeneous Poisson pro-
cesses. That is, with probability go the arrivals are drawn
from a homogeneous Poisson process with rate Ao and with
probability g1 = 1 — go they are drawn from a homoge-
neous Poisson process with rate A; > Ag (e.9., the so-called
Markov-modulated Poisson process [12]). A binary hidden
state variable s governs this selection. We assume that the
state is a slowly varying process, switching between s = 0
and s = 1 atarate vy < Ag. This assumption means that
the process is quasi-stationary, in the sense that it obeys a
homogeneous Poisson process model over time intervals of
significant duration. Let p denote the (Poisson) service rate
of the queue. If we take Ao < p < A1, then the two Pois-
son processes could be viewed as “light” traffic and “heavy”
traffic models, respectively. Being in state s = 1 could rep-
resent a traffic “burst,” for example.

Now, suppose that a pair of closely time-spaced packets
arrives at the queue. Let mq denote the number of packets in
the queue just before the first packet in the pair arrives and
assume that the traffic state is s = 4. Let p;(j), 0 < j <
K, K being the length of the queue, denote the stationary
queue distribution in state 4. The event that the first packet
makes it into the queue is {mo # K}. This event occurs
with probability 1 — p;(K). If this event has occurred, then
immediately after the first packet (before any other arrival
or service event) the conditional distribution of the queue
(probability of j packets in the queue) is given by



pi(j) = 1)
0 otherwise.

Note that there is at least one packet in the queue at this
time.

Now we remove the conditioning on the state s. The
state’s true value is unknown, however we make two as-
sumptions:

1. the queue distribution is in a steady-state condition, pg
or py, just before the first packet arrives.

2. the traffic remains in state s = 0 or state s = 1 over
the time interval between the arrivals of the first and
second packets

Roughly speaking, these assumptions simply mean that the
traffic is in one state or the other for a sufficient period of
time prior to and after the arrival of the first packet. This
is reasonable under the condition that rate at which the state
changes is much less than the rate of the traffic in either state
(i.e., v < Ag), since then with high probability the traffic
will be in one state or the other.1 Let m denote the number
of packets in the queue immediately before the arrival of the
first packet. The probability that the second packet does not
make it into the queue, given that the first packet did, is

p(K) =
Pr(s = 0jmo < K)po(K) + Pr(s = 1jmo < K)py(K).

The probability

Pr(s=0,mg < K
Pr(s = Ojmo < K) = (Pr(mo <0K) ),
go [1 — po(K)]

0 [1 — po(K)] + a1 [1 — p1(K)]

Thus, we have

pK) =
@01 — po(F)] UL + g1 [1 — pi (K] Y
go [1 —po(K)] + a1 [1 — p1(K)]
qopo(K = 1) + qip1 (K = 1)
o [1 — po(K)] + a1 [1 — p1(K)]

1To be more rigorous, all subsequent statements should be qualified as
“with high probability.”

O]
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Theorem 1 : Let

a = 1-pK),

B = 1-HK).
If go = 0 0or go = 1, then the traffic obeys a homogeneous
Poisson process of rate A;, ¢ = 0 or s = 1, and we have

a > 3.

Proof: Standard queuing theory [13] tells us that p;(j) (the
probability of j packets in the queue under state ¢) is given

by

)1l 0<G<K,
pi(j) =

@)
L 0 otherwise,
where r; = % Also, observe 1 — p;(K) = 11_:—21; so that
~ . 1—7r; j—1 .
) = |7—x|n o 1Si<K (4
Thus,
i (K 1-rk
pUO (1= o
pi(K) 1-—r;

forboth r; = 2¢ < 1and r; > 1. In the case where \; = W
(equivalently r; = 1), the stationary queue distribution is
pi(5)=1/(K+1),=0,...,K. Then

pi(K —1) 1 1

nE) = T m TR Ee1 - 2

This shows that the conditional probability of the sec-
ond packet making it into the queue, conditional on the
first packet making it in, is less than the unconditional
probability that the first packet makes it into the queue (at
least for exactly back-to-back pairs). This phenomenon
was first pointed out the authors by Don Towsley.

Theorem 2 : If 0 < go < 1, then the traffic is inhomoge-
neous and




Proof:  Expression (5)
p(K) = qopo(K) + qip1(K) and inserting (3).
stituting expression (3) into (2) gives expression (6).

is obtained by noting that
Sub-
O

Expressions (5) and (6) can easily be evaluated. In many
cases, unlike the homogeneous scenario in Theorem 1, we
find that p(K) < p(K) (in other words, a < ). A simple
expression is obtained whenrg < 1andr; > 1. As K —
oo We have,

(K

p(K)

showing that p(K) < p(K) if gor1 + ¢1 > 1. For example,
if K =100, go = 0.9, ro = 0.5, and r; = 10 (traffic with
infrequent, but heavy bursts), then o = 0.91 and § = 0.99.

Now let us consider the situation when multiple events
intervene between the arrival of the first and second packets
in the pair. We still assume that the traffic is either in state
s = 0 or state s = 1 when both packets arrive. Define the
(K + 1) x (K + 1) transition matrices

1
qgori + a1’

~—

=

_)

[} p; 0 0 0
p; 0 p; 0 O
0 pf 0 pi O
Ti = . . , 7 = 0, 1,
0 0 pf 0 pf
L 0 0 0 pf pi |
where pf = 32 and pj = 34 = 1 — pf. Also define
the column vectors p; and p; as
pi(0) Izz'(o)
pi(1) ~ pi(1)
Pi = , Pi = , 1= 0, 1
pi(K) pi(K)

Expressions (3) and (4) show that p;(j) = C;p;i(j), 1 <
j < K,where C; =r;* (1_” ) Thus,

74 .
1—r;

pi = Ci (pi — 6i),

where

Suppose there are n intervening events (any combina-
tion of arrivals and services) between the arrivals of the two
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packets. Then, assuming the traffic is in state s = i, the
distribution of the queue when the second packet arrives is
given by

ﬁgn) T ps

C; (pi — TV 6i),

where we use the fact that p; is the stationary distribution,
implying that T? p; = p;. Observe two key facts. First, for
every n the elements of T? §; are non-negative. Therefore,

the K + 1-th element of f)g"), ;bf”) (K) < p;(K). Second,
removing the dependence on the state, we define

f,(n)
Pr(s = 0lmo < K)BS™ + Pr(s = 1jmo < K)p\™,
and combining this with the first fact we have
p™ < Pr(s =0|mo < K)po + Pr(s = 1jmo < K)p;.
In particular,
MEK) <
Pr(s = 0|mo < K)po(K) + Pr(s = 1jmo < K)p1(K)

o (o) i+ ()
= _ K _ K
o (7575) + o (F55)

Thus, the probability that the queue is full when the second
packet arrives is always less than or equal to that probability
computed under the assumption of no intervening events.
We summarize our conclusions with the following theorem.

1—7r1 7'{(_1

e

1—7rg
K+1
1-ry

Theorem 3 : Let

a
ﬂ(")

and assume that 0 < go < 1. Then p(K) > p(K) is a
sufficient condition for

1 - p(K)
1— ™ (K).

a < IB(”),

for every n > 0, where p(K') and p(K) are given by expres-
sions (5) and (6), respectively.

Corollary 1 : If go = 0 or go = 1, then the traffic is homo-
geneous and for alln > 0

a > ﬂ(”).



5. Measurement Framework

Each link in the tree has two (unknown) probabilities
associated with it, the unconditional and conditional
success probabilities, «; and g3;, respectively. These prob-
abilities effect the single packet and back-to-back packet
measurements that we will make, as described below. The
measured data can be collected in a number of possible
ways. For example, UDP can be used for active probing
or TCP connections may be passively monitored, in which
case back-to-back events are selected from the TCP traffic
flows.

Single Packet M easurement: Suppose that n; packets are
sent to receiver 5 and that of these a number m; are actually
received (n; —m; are dropped). The likelihood of m; given
n; is binomial (since Bernoulli losses are assumed) and is
given by

i (L i =M
I(mi|ni,pi;) = (m)pi (1-pi) )

where p; = [T;cp(o,:) @ and P(0,4) denotes the sequence
of nodes in the path from the source 0 to receiver i. For
example, in Figure 2., P(0,10) = {1,3,5,10} and so
Iep0,10) @ = rasasaso.

Back-to-Back Packet Pair Measurement: Suppose that
the source sends a large number of back-to-back packet
pairs in which the first packet is destined for receiver 7 and
the second for receiver j. We assume that the timing be-
tween pairs of packets is considerably larger than the tim-
ing between two packets in each pair. Let n;; denote the
number of pairs for which the first packet is successfully re-
ceived at node 4, and let m; ; denote the number of pairs for
which both the first and second packets are received at their
destinations. Furthermore, let k; ; denote the node at which
the paths P(0,4) and P(0, j) diverge, so that P(0, k; ;) is
their common subpath. For illustration, refer to Figure 2.
and leti = 6 and j = 8, then kg g = 2. With this notation,
the likelihood of m; ; givenn; ; is binomial and is given by

Umij|nij,pij) = ( z’]>p21f] (1 — py )i ™,
mi,
where
Dij = H B, H Q.
q€P(0,k; ;)  mEP(ki,;5,3)

6. Inference Tasks

Assume that we have made an assortment of single packet
and back-to-back packet measurements (sent to different re-

ceivers or combinations of receivers) as described in Sec-
tion 4. Collecting all the measurements, define

M = {mipU{m;;}
N = {ni}U{ni;},

where the index 7 alone runs over all receivers and the in-
dices i, j run over all pairwise combinations of receivers in
the network.

Let us also denote the collections of the unconditional
and conditional link success probabilities as o and 3, re-
spectively. The joint likelihood of all measurements is
given by

[T1mi s ni5,:5)-

1,5

Since M and A are known, we view (M | N, a,3) as a
function of the unknown probabilities o and 5. We call
(M| N, a,B) the likelihood function of o and 3.

Based on the likelihood function, we wish to make
inferences about the parameters o and 3. Several options
exist.

Maximum Likelihood Estimation: Maximum likelihood
estimates of o and 3 are defined as

(a’B) = argmax l(M|N7a;:B)
o3

Maximum likelihood estimation enjoys many desirable
properties and is widely utilized in statistical inference [14].

Maximum Integrated Likelihood Estimation: The con-
ditional success probabilities 3 may not be of interest in
many applications. In such cases, 3 are called nuisance pa-
rameters, and it is common to integrate the likelihood over
the nuisance parameters first, then maximize the result with
respect to the parameters of interest (in this case «). The
integrated maximum likelihood estimates of o are defined
as

& = argmgx/l(/\/lw\/,a,ﬂ)dﬂ,

where each conditional success probability 3, is integrated
from 0 to 1. Integrated likelihood methods “automatically
incorporate nuisance parameter uncertainty” [14]. As a
consequence, the integrated likelihood function may pro-
vide more accurate estimates of the unconditional success



probabilities than those provided by the joint likelihood
function.

Marginal Likelihood Analysis: In addition to determin-
ing the success probabilities that maximize the likelihood
function, it may be of interest to examine the marginal like-
lihood function of each individual probability. The marginal
likelihood function of «; is defined as

(MIN, @) = / (M N, e, B) da; dB,

where o is the collection of all unconditional success prob-
abilities except a;, and all probabilities are integrated over
the interval [0, 1]. Similarly, the marginal likelihood func-
tion of 3, is

(MIN,B) = / (M |N,a,B) da dBs.

The marginal likelihood functions are univariate functions
of the remaining parameter. The marginals can be maxi-
mized to obtain an estimate of the parameter, or the func-
tions can be inspected for additional information. If the
marginal has a single mode (peak), then the width or spread
of the likelihood function can be used to determine confi-
dence intervals for the maximum marginal likelihood es-
timate. More generally, the marginal may have multiple
modes (a feature completely lost when focusing only on the
maximum), which may provide useful alternative explana-
tions for the measured data.

1.

Computing maximum likelihood estimates or marginal like-
lihood functions can be a formidable task. Multidimen-
sional maximizations or integrations are time-consuming
and directly attempting any of the inference tasks outlined
in Section 5 leads to extremely computationally demanding
algorithms that are not scalable to large networks.

The basic problem is that the individual likelihood func-
tions I(m; | ni,p;) or 1(m; ;| nsj,pi ;) for each type of
measurement involve products of the 8 and/or o probabil-
ities. Consequently, it is difficult to separate the effects of
each individual success probability.

We overcome this difficulty using a common device in
computational statistics known as unobserved data or vari-
ables. To introduce the notion of unobserved data, let us
consider the likelihood

Inference Algorithms

i\ m; ni—m;
Um; |ni,pi) = (m-)pi (1-pi) )
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where p; = HjeP(O,i) a;. Assuming that the path con-
sists of more than one link, the effects of the individual
link success probabilities on this measurement are com-
bined through the product over the entire path. However,
suppose it were possible to measure the numbers of pack-
ets making it to each node. Let us denote these unobserved
measurements by w; ;, 5 € P(0,4), j # i. With these mea-
surements in hand, we can write the likelihood function of
the observed and unobserved data as

U({uj,i} | ni, pi)

II

Up() i »

[O)BRAWNCR Up(jy,i—Uji
( )a]J (]__a]) p(3), EA
7€P(0,4)

Uj,i

where p(j) again denotes the parent of node j. Also, since
we are able to measure at the source and receiver, in the
expression above we set ug; = n; and u;; = m;. The
example in Figure 7. illustrates the notion of unobserved
data.

Upp11 =1py

Figure 2 — Path from source to receiver i = 11 with
unobserved data at each internal router.

Because the likelihood I ({u; ;} | s, ps) depends on both
the observed data and the unobserved, it is called the com-
plete data likelihood. The key feature of the complete data
likelihood function is that it factorizes into a product of in-
dividual binomial likelihood functions, each involving just
a single success probability. Thus, the complete data likeli-
hood function is a trivial multivariate function, and the ef-
fects of the individual link probabilities are easily separated.

In a similar fashion, we introduce unobserved data for
all measured paths, and these variables allow us to factorize
the joint likelihood function into a product of univariate
functions. Several well-known optimization strategies take
advantage of this simplification.

The Expectation-M aximization Algorithm: As the name
suggests, the Expectation-Maximization (EM) Algorithm



alternates between two steps; one step estimates the
unobserved data and the other maximizes the complete
data likelihood [15]. The EM Algorithm can be used for
our problem to compute maximum likelihood estimates
of o and . Beginning with an initial guess for o and 3,
the algorithm is iterative and alternates between two steps
until convergence. The Expectation (E) Step computes the
conditional expected value of the unobserved data given
the observed data, under the probability law induced by
the current estimates of o and 8. The E Step can be
computed in O(N) operations, where N is the total num-
ber of receivers, using an upward-downward probability
propagation (or message passing) algorithm [9]. The Max-
imization (M) Step combines the observed and expected
unobserved data to form the complete data likelihood
function which is then maximized with respect to o and 3.
Since the complete data likelihood factorizes into a product
of univariate functions, each involving just one success
probability, the maximizers have closed-form, analytic
expressions. Thus, the M Step can also be computed in
O(N) operations. Each iteration of the EM Algorithm is
therefore O(IV) in complexity. Moreover, it can be shown
that the original (observed data only) likelihood function is
monotonically increased at each iteration of the algorithm,
and the algorithm converges to a local maximum of the
likelihood function [15]. Our experiments have shown that
the algorithm typically converges in a small number of
iterations.

Factor Graphsand Marginal Analysis. It may be of in-
terest to compute maximum integrated likelihood estimates
or to inspect marginal likelihood functions, as mentioned in
Section 5. The EM Algorithm only delivers maximum like-
lihood estimates. However, using the notion of unobserved
data in conjunction with probability propagation similar to
that employed in the E Step above, computationally ef-
ficient algorithms do exist for computing maximum inte-
grated likelihood estimates and marginal likelihood func-
tions.

These algorithms are based on graphical representations
of statistical models. Such representations include Bayesian
networks and, more generally, factor graphs [9]. Both the
parameters of interest and collected data appear as nodes
in the factor graph. Each node associated with a parame-
ter is characterised by a (potentially unknown) probability
distribution. Links between the nodes indicate probabilis-
tic dependencies. By introducing unobserved variables as
additional nodes, it is possible to decouple the effects of
different success probabilities in the graphical model.

Probability propagation can be used to perform exact in-
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ference, provided the graph structure is acyclic. However,
this may require high-dimensional summations, leading to
a heavy computational burden; thus, exact inference algo-
rithms can scale poorly as the network size increases. To
avoid the associated computational burden, we have devel-
oped an approximation to exact inference. In the approxi-
mate strategy, we first infer likelihood functions of the loss
parameters at the receivers. We then use these functions to
perform inference at the next level of the tree, and continue
upwards to the source. Details of the algorithm appear in

[8].
8. Consistency and Bias

If the conditional success probabilities 3 are all exactly one,
then it can be shown that maximum likelihood estimates of
the unconditional losses a: will tend to their true values as
the number of packet measurements increases. This can be
understood by considering a single path from the source to
receiver j. The single packet measurements m ; and n; pro-
vide an asymptotically consistent estimator of the product

pi = [Liep(o,;) @i~ Specifically, p; = 24 converges to p;
3, J
as n; tends to infinity. Similarly, the estimators p; ; = T:JJ ,

converge to

Dij = Qr,

II &

q€P(0,k: ;)

I1

TE’P(k,‘,J‘ 5])

as each n; ; — oo (recall that the node %; ; defines the sub-
path common to both receivers).

To simplify the notation, let us assume that there are
L links in the path and denote them by P(0, )
{j1,J2,---,jr}, where jr j. Define iy,...,ig SO
that the common subpath between P(0,4,) and P(0, j) is
P0,4,), £ =1,...,L (note that iy, = j, = j). Then we
have

pj = Q@ Qy Qi
Pijg — /Bhajzajs T O,
Disj — B B0y,
Pirir = BjiBi.Bs By,

Note that if p;, ;, — 1, then we may deduce that §;, =
1, ¢ 1,...,5. In this case, p;, ,,j. — «j . and
ﬁiL—z,jL = Qjp .y T Qg for{ = 2,...,L. Con-
sistent estimators of o can be computed according to

Qi = DPjr,jo>
~ _ ﬁiL_z,jL
@, = g1 L-1 (1)
sz—£+1,]L



If one or more of the 3 are less than one, then a system-
atic bias is introduced into the estimation process and the
maximum likelihood estimators are not consistent. How-
ever, the severity of the bias is directly linked to the extent
to which the @ deviate from one; the less the deviation, the
less the bias. Suppose that p; ; — v < 1. Then we can
deduce that

4
v < II8; <1
k=1

for ¢ = 1...,L. This shows that the asymptotic value of
Diy ;i lies within the interval

L L
l’Y H Qg , H ak];
k=L—¢+1 k=L—f+1

for/ = 1,...,L — 1. From here it follows that the the
asymptotic values of the estimators {a, } defined in (7) lie
within the intervals
o 3]
YO , — Qg | -
Y

Thus, we see that the value of v = Hle B;, controls the
asymptotic accuracy of the maximum likelihood estimators.

9. Simulation Experiments
9.1. A Simple Example

Let us now consider the simple two-receiver network shown
in Figure 9.1.. Assume that we have made measurements of
single packet and back-to-back packet:

M
N

{mi}iza,3 U{m;}ij=2,3
{ni}iza,3 U{ni;}ij=23-

Figure 3 — A small network with two receivers. Associ-
ated with each link are an unconditional success proba-
bility, «;, and conditional success probability, 3;.
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Maximum likelihood estimates of a1, as, a3 are given
by

(a15a23a3)

IM|N,a1,a2,a3, 81,85, 03)

arg max
Q1,02,a3

max
B1,82:83

Note that direct optimization requires the joint maximiza-
tion of the six dimensional likelihood function; a daunting
task even in this simple case. Using the EM Algorithm we
can easily determine (@i, &2, as) in O(K) time, where K
is the number of iterations of the algorithm. The marginal
likelihood function of each «; can also be computed using a
factor graph representation of the network and a probability
propagation algorithm in O(K) time.

To explore the performance of these algorithms, consider
three scenarios.

Scenario 1:
(o1, a2,03) = (0.80,0.90,0.70)
(B1,B5,83) = (0.99,0.99,0.99)
N = {n;=10000}i=2,3 U {n;; = 10000} j=2,3
Scenario 2:
(a1,a9,a3) = (0.80,0.90,0.70)
(B1,B5,83) = (0.95,0.95,0.95)
N = {ni=1000}i=2,3 U {n; ; = 1000}; j=23
Scenario 3:
(a1,a2,a3) = (0.80,0.90,0.70)
(B1,B2.83) = (0.85,0.95,0.75)
N = {’I’Li = 100}1':2,3 U {’I’LZ,J = 100}1',]-:2,3

The three scenarios were each simulated in 77 = 100
independent trials. In each trial, the maximum likelihood
estimates (MLESs) and marginal likelihood functions were
computed for each unconditional success probability. The
maximums of the marginal likelihood functions (maximum
marginal likelihood estimates - MMLES) provide as set of
alternatives to the MLEs. The mean (over all trials and
links) absolute error, maximum (over all trials and links) ab-
solute error, as well as the theoretical bound  (as described
in Section 7) for each scenario are summarized in Table 1.



Table 1. Loss estimation performance

Absolute Error

&

@D

2 | MLE MMLE Bound
S| mean / max mean / max v

1| 0.0106 / 0.0137 | 0.0053 / 0.0122 | 0.0199
2 | 0.0391 / 0.0452 | 0.0191 / 0.0256 | 0.0690
3 | 0.0533 / 0.1141 | 0.0854 / 0.1148 | 0.3625

In Scenario 1, we have a very large number of packet mea-
surements (10000 of each type) and the 3 are almost 1. Both
the MLE and marginal likelihood function produce nearly
perfect inferences. In Scenarios 2 and 3, we see larger er-
rors, but these errors are within the predicted bounds. It
is also interesting to note that the maximum marginal like-
lihood estimator performs slightly better than the standard
maximum likelihood estimator. This improvement has also
been observed in many other applications [14]; marginaliza-
tion over nuisance parameters tends to provide more robust
estimators. Figure 9.1. displays typical results from each
scenario.

05 06 0.7 08 09 1 05 06 0.7 0.8 0:9 1 05 06 0.7 08 09 1

05 06 07 08 09 1 05 06 07 08 09 1 05 06 07 08 09 1

05 06 07 08 09 1 05 06 07 08 09 1 05 06 07 08 09 1

Figure 4 — Typical results from each measurement sce-
nario. From left to right plots show results for a1, as,
and as. The true value is indicate with a solid vertical
line, the MLE is indicated with a dashed vertical line.
Also shown are the marginal likelihood functions for
each of the a.

9.2. A Larger Network Simulation

We experimented using simulations based on the network in
Figure 7.. We generated probe measurements by allowing

each link in the network to assume one of two state values,
0 representing congestion, and 1 representing a light traf-
fic burden. At time instants ¢ € T, the state of each link
was updated according to a Markov process. The transition
probability matrix of the process governing the state of link
(p(3),14) was determined by drawing a; from a uniform dis-
tribution U [0, 1], and then drawing 3, from Ula;, 1]; the
matrix was designed so that if traffic were sent across the
link it would experience a steady-state success probability
of a; and a conditional success probability of 3,. Packet-
pair probes were sent to the various receivers in an ordered
fashion designed to extract an informative subset of the pos-
sible m; ; and n; ;. The times at which the first packets of
these pairs were sent were determined from a Poisson pro-
cess, such that inter-arrival times were well-separated. The
second packet in a pair was sent one time instant later. 1600
packet pairs were sent through the network, with the des-
tinations designed so that there was a uniform distribution
across the network of divergence nodes (the node at which
the paths of the individual packets in the packet-pairs sep-
arated). Such a distribution guarantees an equal (prior) ex-
ploration of all network parameters.

Figure 9.2. depicts the result of one of the experiments.
The posterior distribution of success probability was calcu-
lated for each link, and plotted in the boxes; the arrows mark
the true values. The confidence that can be placed on an es-
timate is clearly dependent on the amount of data that can
be collected; estimation of the success probabilities of ay,
ag, and ay is based on packet-pairs involving a packet trav-
eling from the source to either node 6 or 7, both of which
are extremely lossy paths. The maximum marginal likeli-
hood estimators for the unconditional success probabilities
resulted in a mean absolute error of 0.084, over 200 inde-
pendent trials.

10. Conclusions

This work demonstrates the potential of unicast, end-to-
end network measurement to determine internal network
losses. We proposed a back-to-back packet pair measure-
ment scheme that takes advantage of the correlations in
losses experienced by closely time-spaced packets. We also
developed two novel algorithms for likelihood analysis and
estimation of internal link loss probabilities. This paper has
laid the theoretical foundation for future investigations of
unicast network tomography. One promising practical as-
pect of our framework is that it may be used in concert with
various measurement tools, including active UDP probing
or passive TCP monitoring. We are currently studying our
framework with more sophisticated simulation tools as well
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Figure 5 — An example of the results of the experiment
described in Section 8.2. 1600 packet pairs were sent to
various receivers in order to generate posterior prob-
ability distributions of the success rates of the links.
These are plotted in the boxes on the links; the arrows
mark the true values.

as with actual network measurements.
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